First-order expansions for eigenvalues and eigenfunctions in periodic homogenization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues and Eigenfunctions

The article describes the eigenvalue and eigenfunction problems. Basic properties, some applications and examples in system analysis are provided.

متن کامل

High Order Correctors and Two-scale Expansions in Stochastic Homogenization

In this paper, we study high order correctors in stochastic homogenization. We consider elliptic equations in divergence form on Zd, with the random coefficients constructed from i.i.d. random variables. We prove moment bounds on the high order correctors and their gradients under dimensional constraints. It implies the existence of stationary correctors and stationary gradients in high dimensi...

متن کامل

Singular Asymptotic Expansions for Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Planar Domains

We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for the first Dirichl...

متن کامل

Asymptotic Expansions of Eigenvalues and Eigenfunctions of Random Boundary-value Problems*

An asymptotic procedure is developed for calculating the eigenvalues and eigenfunctions of linear boundary-value problems which may contain random coefficients in the operator. The corresponding asymptotic series for the solution of a second-order initial-value problem is shown to be convergent.

متن کامل

On the Rate of Convergence in Periodic Homogenization of Scalar First-Order Ordinary Differential Equations

In this paper, we study the rate of convergence in periodic homogenization of scalar ordinary differential equations. We provide a quantitative error estimate between the solutions of a first-order ordinary differential equation with rapidly oscillating coefficients, and the solution of the limiting homogenized equation. As an application of our result, we obtain an error estimate for the solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2019

ISSN: 0308-2105,1473-7124

DOI: 10.1017/prm.2019.8